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Abstract

This article updates total factor productivity (TFP) growth in UK agriculture from 1953–2005 and shows that public and private research and
returns to scale explain TFP. Cointegration and causality tests are used to investigate the validity of attempts to explain UK agricultural productivity
with R&D and related technology variables. Then, the length and shape of the lag structures are modeled and compared with the structures that
are commonly imposed on the data. The rates of return (ROR) to R&D using the data determined lags differ considerably from those obtained by
imposing lag shapes. These comparisons show that the ROR to public R&D are sensitive to the lag shape as well as its length and that the omission
of other technology variables, such as mechanical and chemical patents pertaining to agriculture and farm size can bias the ROR.

JEL classification: O33, Q16
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1. Introduction

Changes in accounting procedures and index construction
have substantially improved TFP measurement in UK agricul-
ture. These changes are reviewed and summarized in Thirtle
et al. (2004). The methodology is now very similar to that
used by the United States Department of Agriculture (USDA)
in constructing the US TFP statistics. Furthermore, the pas-
sage of time has added substantially to the length of the time
series since Schimmelpfennig and Thirtle (1994) first applied
time series techniques to these data. Thus, this article updates
TFP in UK agriculture to 2005 and then explains TFP change
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using both time series techniques and data determined lag
structures.

The next section briefly explains the data and reports the TFP
results, which show that the UK has had very little TFP growth
since the severe cuts in the R&D budget that began in 1982. The
TFP index is explained by technological progress, measured by
both public R&D and private patents. The third section checks
the validity of the relationship between TFP and the explana-
tory variables by investigating the time series properties of the
data, establishing that cointegrating regressions exist and es-
tablishing causality. Section four uses the time series data to
model the length and shape of the R&D lag, using beta, expo-
nential, gamma, and polynomial lag distributions (PDL). The
biases caused by omitting the patent variables that represent
private technology generation are investigated. Then, in section
five, the lag shape as well as the length, plus variable omis-
sion are shown to be important to the rate of return (ROR)
estimates. This section illustrates that ignoring private sector
patent activity can bias the ROR for public R&D downward,
rather than upward. The final section offers conclusions that
speculate on this unexpected outcome and the current state of
knowledge.

c© 2008 International Association of Agricultural Economists DOI: 10.1111/j.1574-0862.2008.00316.x
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2. Measuring and explaining TFP in UK agriculture

There is no doubt that UK TFP growth in the last two
decades has been slow and this is shown most clearly by in-
ternational comparisons. Fig. 1 uses data from an unpublished
study for the UK Department for the Environment, Food and
Rural Affairs (DEFRA) by Eldon Ball. As recently as 1981,
the UK was level with France, but French growth continued,
while UK growth ceased, so that by 2001 there is a huge
gap between the UK and the leading EU countries. Indeed,
the UK is now the least productive country in the EU, along
with Sweden. This would be unremarkable if it were not for
the fact that the UK national agricultural research system is
still quite highly regarded internationally. To find the cause
of the demise in UK productivity this article follows the con-
ventional wisdom in supposing that TFP growth is generated
by technological change, which results from public and pri-
vate R&D, assisted by some contribution from increases in
farm size, as there is the expectation of increasing returns to
scale.

Thirtle et al. (2004) reported on the construction of a new
Tornqvist–Theil TFP index for the UK agricultural sector,
which is very similar in construction to the index reported by
the USDA. DEFRA has adopted the same methods, except that
it reports Fisher’s ideal index, but this makes little difference to
the results. Thus, the index used here is the Thirtle et al. (2004)
index updated to 2005 using data from DEFRA. TFP grew at
almost 2% per annum up until 1983. Then, for the 18 years
from 1983 to 2005, growth falls to 0.2%. Indeed, the index is
higher in 1983 than in 2000, although this is comparing a good
year with a bad one. Then, there is some evidence of a slight
recovery after 2000.

The decline in TFP growth can be explained by public and
private technology and returns to scale. Public sector R&D has
generated most of the biological technical change in the past,
while mechanical technical change has been much more the
province of the private sector, which has also much improved
the chemical inputs, such as fertilizer, pesticide, and herbicide.
The structure of UK public and private agricultural R&D is
explained in Thirtle et al. (1997). The TFP data are from 1953
to 2005. Public agricultural R&D expenditures, in constant val-
ues, are updated from Thirtle et al. (1997). Although the series
extend back to 1940, the long lags on R&D prevent fitting to the
full TFP sample; with a 27-year lag the model is still fitted to
40 years of data, from 1966. There is no R&D expenditure data
for the private sector, but from 1940 there are data on mechani-
cal and chemical patents pertaining to agriculture, first used by
Khatri and Thirtle (1996).

These are counts of all relevant patents registered in the
USA, regardless of country of origin and where they were
first used. These are the only patent series available that go
back far enough, but they are quite suitable for capturing pri-
vate activity in the UK, since Schimmelpfennig and Thirtle
(1999) showed that international spillovers are more important
than domestic patent activity for the European Union coun-

tries and also measured spillovers from foreign public research
systems. The internationalization of private technology gen-
eration that has resulted from the increasing importance of
multinational companies has led to a global pool of available
technology and country of origin is relatively unimportant.1

In addition to technical change, increasing returns to scale com-
bined with increasing farm size may be expected to contribute
to TFP growth and there are farm size data from 1953 on-
ward from Thirtle et al. (2004). This article also investigates
the evidence on how domestic and foreign patents and domes-
tic public R&D are related, but again the data begin only at
1973.

Thus, this study concentrates on the longest series available,
in the hopes of not truncating the R&D lag. The specification
is less complete in other ways as a result and there may well be
misspecification due to omitting variables that would capture
other technology generating activities. However, the most ob-
vious deficiency is the lack of extension data, which is further
discussed later.

TFP growth appears to have followed the explanatory vari-
ables with a lag, as R&D grew rapidly until 1981 and then
declined, while both mechanical and chemical patent counts
had ceased growing by the 1980s and farm size growth prac-
tically ceased a few years later. Thirtle et al. (2004) presents
diagrams showing these series and the variables that are ex-
pected to be causally prior to TFP all turn before TFP stopped
growing. This was the period when the Thatcher govern-
ment severely reduced public expenditures on agricultural
research.

In a preliminary investigation of these relationships, the un-
restricted model should include as many individual lagged
values of the variables as are needed. If the relationship is as-
sumed to be linear in logarithms, the ordinary least squares re-
gression equation for substantiating the relationships explained
above is

Ln TFPt = β0 + β1LnR&Dt−i + β2LnMPt−j

+β3LnCPt−k + β4LnFSt + β5DUMt + ε, (1)

where R&D is lagged i years, mechanical patents (MP) j
years, and chemical patents (CP) k years. Farm size (FS) is not
lagged and DUM is a dummy that is zero until 1983 and unity
thereafter. The dummy variable is not crucial to the results,
but can help to deal with the possible structural break at this
point. This equation uses point estimates to find the lags that
give the strongest impact on TFP and to drop those that are not
significant. The strongest lag on R&D was initially found to be
12 years, which can be viewed as the midpoint estimate of a 24-
year lag structure. Thirtle et al. (2004) found a second-degree

1 For most of this period Imperial Chemical Industries (ICI) was one of the
leading UK companies. It did most of its research in the UK, which was only
10% of its market and the rest in California, because of the availability of
quality researchers (Thirtle et al., 1997). Typically, patents would be registered
in all countries of interest.
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Fig. 1. TFPs for the leading EU countries and the UK.

polynomial 24 years long. Mechanical patents fitted best with
the short lag of three years and chemical patents with no lag
at all. The main objective of this exercise is to determine the
strongest lags in order to guide the imposition of restrictions,
which is what the distributed lags structures are.

Table 1
Explaining TFP change without lag structures, from 1953

Dependent variable: Logarithm of TFP

Regressors Elasticity Elasticity Elasticity Elasticity Elasticity Elasticity Elasticity Elasticity
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Constant 4.4011 2.1670 3.570 8.3106 3.7884 3.5730 4.3046 4.3162
(299.85) (19.47) (54.83) (13.13) (24.05) (18.49) (29.822) (28.99)

Ln UKR&Dt−10 0.0758 0.0931
(2.33) (1.76)

Ln UKR&Dt−12 0.1412 0.1233 0.1393
(42.37) (6.77) (7.05)

Ln UKR&Dt−15 −0.0172
(−0.42)

Ln UKR&Dt−24 0.0291 0.0333
(1.83) (1.46)

Ln farm size 0.6889 0.0996 0.0743
(25.46) (1.86) (1.38)

Ln mechanical 0.2712 0.0392 0.0327 0.0524 0.0462
Patents t−3 (21.58) (2.04) (1.72) (1.81) (1.41)
Ln chemical −0.5590 0.0463
Patents (−5.31) (1.83)
Structural break 0.0191 0.0212
Dummy (1.76) (1.99)
Adjusted R2 0.9792 0.9391 0.9117 0.3931 0.9826 0.9835 0.9323 0.9304
Durbin Watson 1.220 0.411 1.342 0.570 1.406 1.3325 1.493 1.464
Akaike (AIC) −105.461 −79.465 −69.063 −24.469 −107.156 −109.059 −78.402 −78.102
Schwarz (SBIC) −103.59 −77.77 −67.19 −22.60 −102.48 −103.445 −75.186 −74.074
Log likelihood 107.114 81.64 70.053 24.272 112.156 115.059 82.402 83.102

The results are reported in Table 1, which makes it clear
that lack of explanatory power is not the problem with these
long series. The first columns, labeled Models 1 to 4, show
that R&D alone explains 98% of the variance; farm size alone
94%; mechanical patents alone 91%; and chemical patents a
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more modest 39%. When R&D has this level of explanatory
power (even without fitting it as a distributed lag) the problem
is likely to be that the coefficients of the associated variables
will not be significantly different from zero. In fact, Model 5 in
Table 1 shows this is not the case either, as the elasticities of
farm size, mechanical patents, and the structural break dummy
are all significantly different from zero at the 5% level. The test
is taken to be one tailed as economic theory excludes negative
elasticities. When chemical patents are added, as in Model 6,
the significance levels are maintained, except in the case of farm
size.

Model 7 simply shows that the elasticity of R&D is significant
with lags of both 10 and 24 years, which may suggest a bimodal
lag distribution, especially as Model 8 shows that the coefficient
is negative and insignificant at 15 years. Note too that if only
R&D is used to explain TFP, the elasticity is biased upward.
With over 98% of the variance already explained the coefficient
on the weather index was not significantly different from zero.
Lastly, the Durbin Watson statistics for these more completely
specified regressions (Models 5 to 8) are in the indeterminate
range, so serial correlation is not pursued further at this point.

Whatever criteria are used for model selection, it is clear
that Model 5 is likely to be preferred as it has the joint highest
adjusted R2 and the best Akaike Information Criteria (AIC) and
Likelihood statistics. The Schwarz Bayes Information Criteria
(SBIC) statistic is almost top as well and it is only let down
by the Durbin Watson statistic. As this can be taken to indicate
misspecification, Models 7 and 8, which have more than one
lag of R&D, would be preferred in this respect, but fare far
less well in all the other tests. This issue of multiple impacts of
R&D will be further investigated later, but note that although
the more completely specified models have good test statistics,
the improvement over Model 1 is very limited. One 12-period
lag of R&D comes close to being the preferred model.

These powerful results can be compared with the tenuous
outcomes reported by Thirtle and Bottomley (1989), when the
series were far shorter and the TFP index less competently mea-
sured. Though that study analyzed all five different TFP indices
that were then available, the highest adjusted R2 obtained was
only 0.75. Whilst this improvement is encouraging, the long
time series now available also means that these data can now
be subjected to more rigorous examination using time series
techniques. The relationships postulated above may prove to be
spurious according to the improved standards set by improve-
ments in time series econometrics. Then there is the issue of
using the information gained above in adequately modeling the
R&D, mechanical and chemical patents, as all three are capital
stocks, which need lag distributions to be imposed or estimated.
This is not likely to improve regressions in which as much as
98% of the variance is already explained and the point estimates
of the elasticities usually prove to be good approximations of
the elasticities obtained using stock variables. However, if either
the length or shape of the lag structure is incorrect, the elasticity
estimates will be both inefficient and biased because of omitted
variables. Also, both length and shape matter in that they affect

Table 2
Time series characteristics and order of integration of the variables

Variable ADF test Trend/ Characteristics AR
(critical value) intercept order

TFP −1.88 (−2.93) Intercept 1
�TFP −8.44 (2.92) Both I(1) 1
UKR&D −2.49 (−3.50) Both 1
�UKR&D −6.73 (−3.50) Both I(1) 1
Chemical patents −2.71 (−2.92) Intercept 1
� Chemical patents −5.55 (−1.95) None I(1) 2
Mechanical patents −1.83 (−2.92) Intercept 5
� Mechanical pats −4.26 (−2.92) Intercept I(1) 4
Farm size −2.73 (−2.92) Intercept 1
� Farm size −5.90 (−3.50) Both I(1) 1

Table 3
Johansen cointegration results

Equation tested: LTFP Constant LUKRD LMACHP LCHEMP LFARMSIZE
Test statistic (95% critical value)

ADF Eigenvalue test Trace test

−2.6212 (−1.9489) 4.5285 (3.8415) 4.5285 (3.8415)

the ROR considerably, since future impacts are discounted and
information on the distribution of these impacts is important.

3. Time series tests, cointegration, and causality

The time series properties of the variables are now checked
using the augmented Dickey Fuller (ADF) tests reported in
Table 2, which shows that all the variables used in Eq. (1)
are stationary in first differences, so the equation may have a
cointegrating regression.

For this to be so, a linear combination of the variables must
exist that is integrated an order one less than the original vari-
ables. That is, the error term from the cointegrating regression
must be stationary. Since the coefficients estimated in Table 1
are an efficient and unbiased linear combination of the vari-
ables, it is reasonable to check that equation for cointegration.
The ADF test, with no intercept or trend, reported in Table 3
has the null hypothesis of a unit root, which is rejected at the
5% level, meaning that the residuals are stationary and this is
a cointegrating regression (Vogelvang, 2005). The more gen-
eral maximum likelihood approach of Johansen (1988) allows
estimation of all cointegrating relationships and tests for the
number of cointegrating vectors and the direction of causality.
The null hypothesis of no cointegrating vectors is rejected in
both the Eigenvalue and Trace tests, but that of less than two
cointegrating vectors is not rejected. This implies that there is
one cointegrating vector and there should be Granger causality
in one direction, so the next test is to establish this.

The χ2 statistics in the first row of Table 4 test to see if
R&D, patents, and farm size are Granger-prior to TFP and
the probabilities in the next row show that this is true for all
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Table 4
Granger causality Wald tests—Vector autoregressions

Equation TFP UKR&D Farm size Chemical patents Mechanical patents All

TFP (dependent variable)
χ2 27.29 6.3673 4.8007 7.3354 46.211
Prob > χ2 0.000 0.041 0.091 0.026 0.000

UKR&D (dependent variable)
χ2 0.17217 2.2471 0.05173 2.7552 6.2479
Prob > χ2 0.918 0.325 0.974 0.252 0.715

Farm size (dependent variable)
χ2 0.91686 0.62934 1.3573 1.6997 11.686
Prob > χ2 0.632 0.730 0.507 0.427 0.232

Chemical patents (dependent variable)
χ2 5.4891 1.0247 7.7287 1.0357 30.725
Prob > χ2 0.064 0.599 0.021 0.596 0.000

Mechanical patents (dependent variable)
χ2 0.15252 2.3391 3.4857 5.1075 20.741
Prob > χ2 0.927 0.311 0.175 0.078 0.014

Log likelihood 1608.525
AIC −69.84204

SBIC −66.92246
HQIC −68.75932

the explanatory variables, which is the required result. The
remainder of the table shows that there is little evidence of any
feedbacks in the opposite direction, although TFP and farm size
do appear to be causally prior to chemical patents, which are
themselves prior to mechanical patents.

Having established cointegration and causality in the required
direction it may be possible to represent the relationships as an
error correction model (ECM) as Granger’s representation the-
orem proves that a cointegrated system of variables can be
adequately represented as an ECM (Engle and Granger, 1987).
The ECM form did not prove to be suitable for modeling the
long lags inherent in technology generation, so the more con-
ventional path of fitting distributed lag structures or creating
stock variables is followed here. However, the properties of
the data continue to be the center of attention, as models of
the lag structures provide some continuity with the time series
approach used so far (see Gilbert, 1990).

4. Modeling lag length and shape

4.1. Lag relationships between research and productivity
growth

Expenditures on R&D are investments generating new tech-
nologies that augment the existing stock of techniques, which
are at the same time being diminished by depreciation as old
technologies cease to affect productivity. All attempts at model-
ing capital stocks amount to estimating or imposing the weights
on a lag distribution (quite simply a weighted moving average).
There are numerous alternative shapes, many of which are well
summarized in Maddala (1977, Ch.16), but in most cases the
impact of new investment must be determined and so must the

rate of depreciation. However, when the lag covers the entire
relationship from R&D expenditures to the impact on farm level
TFP, rather more is involved. First, there is the lag from expen-
ditures to technology generation, followed by the diffusion lag.

For patents, the gestation lag is removed, but the rates of dif-
fusion and depreciation have to be captured. One extreme is the
lack of diffusion lag and exponential decay of patent knowledge
stocks that were pre-constructed by Khatri and Thirtle (1996),
using a perpetual inventory model (PIM), where the patent’s
stock in year t is the number of patents registered in year t plus
the stock of past patents, multiplied by (1-δ), where δ is the
depreciation rate and is set at 0.08. The significance of 0.08 is
that a patent’s contribution becomes negligible after 17 years,
which was roughly the life of a U.S. utility patent during this
period. Other common alternatives are the linear distributed lag
(akin to straight line depreciation), the uniform distribution of
a simple moving average, inverted V or trapezoidal shapes, and
inverted U shapes associated with Almon lags. The last three of
these allow for both gradual adoption and decay.

Thus, Alston et al. (2000) found that in agricultural eco-
nomics the two most common approaches have been low-order
polynomial lags and pre-constructed trapezoid and inverted
V lags. In the second-degree PDL structures, usually both end
points are constrained to equal zero and the R&D is in loga-
rithms. The inverted U shape, formed by the estimated elasticity
weights of the PDL, is thus the shape of the knowledge capital
stock. Alternatively, a knowledge stock variable can be manu-
ally created and imposed, using inverted V or trapezoidal lag
weights, to give an alternative form of moving average, which
is then subjected to logarithmic transformation.

Thus, the two approaches are somewhat different in that the
trapezoid is used to construct a knowledge stock and then the
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logarithm is taken, whereas the PDL is estimated with the R&D
data in logarithms. The PDL was intended to allow estimation of
elasticities for individual years, while still conserving degrees of
freedom and overcoming the fact that unconstrained estimation
is difficult because numerous lags of the same variable are
normally collinear. The PDL and trapezoid are compared in
Fig. 2, using UK data. The diamonds in the figure depict a
second-degree PDL, which allows only one turning point and
is also constrained to zero at each end point. Test statistics
like those reported in Table 1 were used to select the preferred
model, which was found to have a three-year lead time, meaning
that the lag begins at zero in the third year and then persists for
25 years.

The estimated coefficients for the PDL, which are elastici-
ties, since all the variables are in logarithms, are reported in the
first column of Table 5 (Model 9), while the t-statistic of 6.30
in the second column shows that they are collectively statisti-
cally different from zero. The other technology variables are
mechanical and chemical patents pertaining to agriculture, for
which several alternatives were tried for creating stocks. The
PIM and other pre-constructed series did not give significant es-
timates, but when chemical patents are modeled as a stock using
a five period, second-degree PDL, again constrained to equal
zero at both end points, the PDL is significant and model fit
is improved. Mechanical patents are modeled in the same way,
but with a one-year lead time and seven period lag. Together the
private sector patent series have elasticities that sum to almost
0.3, which is greater impact than the total R&D elasticity of
0.2. This reflects the fact that private sector expenditures in the

advanced countries have overtaken public expenditures (Alston
et al., 1999). Farm size is also included, to capture the possible
contribution of increasing returns to scale in TFP growth, as
farm size was growing substantially until the late 1980s, when
it stabilized and then fell. The farm size variable was not signif-
icant, but the diminishing and then declining growth is captured
by the negative sign on farm size squared, which was included
to deal with this nonlinearity.

The square symbols in Fig. 2 depict the shape of the
trapezoidal lag used to construct the R&D knowledge stock
in the alternative approach. The greater size should be ig-
nored as the coefficients reflect the weights used rather
than estimated elasticities. The lag of 35 years and the
weights are the same as Huffman and Evenson (2006, p.
671) have used for the USA and Mullen and Cox (1995) for
Australian broadacre agriculture. To keep the results compa-
rable to the PDL, it is fitted from 1967 to 2003, although this
does mean projecting the 1940 value for R&D back another 10
years.2

The program estimates a single elasticity, of 0.172, for this
logarithmic knowledge stock variable, rather than annual co-
efficients. In comparison with the PDL, the R&D elasticity is
lower and those for both patent series are higher. All the test

2 The long lags lead to slightly different start and end dates in these models.
The estimation period is kept as long as possible by extrapolating series for a
few years when this does not change the results significantly. The exact periods
are recorded in the data appendix. The R&D data from Thirtle et al. (1998) was
used to extend the series.
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Table 5
Results for constrained PDL, trapezoidal, and beta lag distributions

Variable PDL constrained (Model 9) Trapezoid (Model 10) PDL unconstrained (Model 11)∗

Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant 3.4869 9.65 3.0415 5.2 3.04623 6.38872
LCHEMP 0.0172 2.43 0.0274 2.61 0.024955 2.84138
LCHEMP(−1) 0.0274 2.43 0.0439 2.61 0.039928 2.84138
LCHEMP(−2) 0.0309 2.43 0.0494 2.61 0.044919 2.84138
LCHEMP(−3) 0.0274 2.43 0.0439 2.61 0.039928 2.84138
LCHEMP(−4) 0.0172 2.43 0.0274 2.61 0.024955 2.84138
CHEMP STOCK 0.1201 0.1921 0.174685
LFARMSIZE2 −0.0568 −3.51 −0.0525 −2.82 −0.066155 −3.22409
LMACHP 0.0156 3.12
LMACHP(−1) 0.0268 3.12
LMACHP(−2) 0.0142 3.65 0.0335 3.12 0.013365 1.80355
LMACHP(−3) 0.0243 3.65 0.0357 3.12 0.022275 1.80355
LMACHP(−4) 0.0304 3.65 0.0335 3.12 0.02673 1.80355
LMACHP(−5) 0.0324 3.65 0.0268 3.12 0.02673 1.80355
LMACHP(−6) 0.0304 3.65 0.0156 3.12 0.022275 1.80355
LMACHP(−7) 0.0243 3.65 0.013365 1.80355
LMACHP(−8) 0.0142 3.65
� MACHP LAGS 0.1701 0.1874 0.12474
UKR&D(−1)
UKR&D(−2)
UKR&D(−3) 0.0017 6.52 0.0074 0.662663
UKR&D(−4) 0.0032 6.52 0.0098 1.05397
UKR&D(−5) 0.0046 6.52 0.0120 1.49402
UKR&D(−6) 0.0059 6.52 0.0138 1.89238
UKR&D(−7) 0.007 6.52 0.0154 2.15017
UKR&D(−8) 0.008 6.52 0.0167 2.25218
UKR&D(−9) 0.0089 6.52 0.0178 2.25471
UKR&D(−10) 0.0096 6.52 0.0186 2.21545
UKR&D(−11) 0.0102 6.52 0.0191 2.16774
UKR&D(−12) 0.0107 6.52 0.0194 2.12684
UKR&D(−13) 0.011 6.52 0.0194 2.09936
UKR&D(−14) 0.0112 6.52 0.0191 2.08882
UKR&D(−15) 0.0113 6.52 0.0186 2.09864
UKR&D(−16) 0.0112 6.52 0.0178 2.13421
UKR&D(−17) 0.011 6.52 0.0167 2.20557
UKR&D(−18) 0.0107 6.52 0.0154 2.3329
UKR&D(−19) 0.0102 6.52 0.0138 2.56084
UKR&D(−20) 0.0096 6.52 0.0119 3.00372
UKR&D(−21) 0.0089 6.52 0.0098 3.98695
UKR&D(−22) 0.008 6.52 0.0074 4.72805
UKR&D(−23) 0.007 6.52 0.0047 1.66966
UKR&D(−24) 0.0059 6.52 0.0018 0.351911
UKR&D(−25) 0.0046 6.52 −0.0014 −0.178705
UKR&D(−26) 0.0032 6.52 −0.0049 −0.450596
UKR&D(−27) 0.0017 6.52 −0.0086 −0.611999
R&D stock 0.1951 0.1717 (35 lags) 6.51 0.2876
Durbin Watson 1.7053 1.4687 1.8689
BSIC −77.691 −73.739 −75.2200
ADJ R2 0.928 0.911 0.9280
Log likelihood 87.719 82.766 87.8580

Note: ∗The number of estimated parameters for the PDLs is the degree of the polynomial, plus one.

statistics for Model 10 (the Durbin Watson, the SBIC, the log
likelihood, and adjusted R2) are inferior, which suggests that
even with a restrictive lag shape like the second-order PDL,
letting the data choose the lag weights may be preferable to
imposing them ex ante. Note though, that in terms of all the
test statistics except the Durbin Watson, neither of these com-

monly used models fares as well as Model 1, let alone the
better models in Table 1, such as Model 5. Attempting to al-
low for the lag distribution seems to impose penalties rather
than improving the results, partly because the lag distribution
cuts 10 years from the period for which the model can be
fitted.
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Neither of the models fitted so far allows very much scope
for the data to determine the shape of the lag distribution, so
the first step in this direction is an unconstrained (neither end
point set equal to zero) second-degree PDL. Frequently the lack
of constraints results in unfortunate results, such as the PDL
inverting itself, but these UK data now seem to be sufficient to
support unconstrained estimates. The lag remains an inverted
U, as the triangles in Fig. 2 show, but is no longer entirely
symmetric. There is further useful information in Model 11,
as the last column of Table 5 reports t-statistics for each year
individually. These last results show that only the lags from
five to 23 years are significantly different from zero. Even so,
the sum of the significant lagged elasticities is 0.29, which is
considerably greater than in the less flexible models. The two
patent series are again estimated as PDLs, but relative to Model
9 that also has patent PDLs, the emphasis indicated by the
two elasticities is reversed, with chemical patents now having
the larger impact. In terms of model selection criteria, there is
very little difference from the constrained model, which does
indicate that end point constraints are valid.

None of the models fitted so far allows much scope for the
data to determine the shape of the lag distribution, so the re-
maining models try to impose fewer priors. Extensive use is
made of model selection criteria, to allow the data to determine
(i) the appropriate lag specification, (ii) the shape of the lag
distribution, (iii) the lag length, and (iv) the lead time (the num-
ber of initial zero lag coefficients). There are a large number of
finite and infinite lag distributions to choose from, reviewed in
Maddala (1977, Ch. 16) and Judge et al. (1985, Chs. 9 and 10).
A discussion of the methods used for the data-determined lag
shapes and lengths can be found in Khatri and Thirtle (2000).
The first two flexible structures considered are the gamma and
beta distributed lags, which are explained below.

4.2. Gamma and beta distributed lags

These lag distributions assume that the lag coefficients lie
on multiples of gamma and beta density functions. The gamma
distribution is a flexible unimodal distribution that can approx-
imate many of the forms mentioned above and allows for a
skewed distribution. Particularly, Huffman and Evenson (1989,
1992) experimented extensively with lag shapes and favor a
trapezoidal form for the R&D knowledge stock, as in Model
10 above. It increases linearly for seven years, is constant for
six years, and declines for 20 years. The gamma distribution
is of interest since it offers a smooth form of such a trapezoid,
which can be estimated rather than imposed. It assumes that the
lag coefficients lie on a multiple of the gamma density function.
Judge et al. (1985) present Tsurumi’s (1971) truncated form of
the distribution, Schmidt’s (1974) more flexible two-parameter
distribution, and some simplifications. The empirical form of
the gamma distribution that combines amendments from Tsu-
rumi and Schmidt is

βi = α(i + 1 )S−1 e− γi , i = 0, 1, ..., (2)

where α and S are parameters to be estimated. Judge et al. (1985,
Fig. 10.1) notes that the lag can take many shapes, according to
the value of S.

For estimation, the function can be written as

yt = αZt + ηt + et

Zt =
t−1∑

i=0

βi

α
xt−i

ηt =
infinity∑

i=t

βixt−i .

(3)

Schmidt suggests the last expression in Eq. (3) can be regarded
as the truncated remainder, which although time-dependent, is
asymptotically negligible and thus can be omitted in estimation.
The parameters S, γ , and α can be estimated from (3) to provide
the approximating empirical form of the general gamma distri-
bution. The gamma distribution provides a flexible structure
suited to positively skewed distributions and ensures positive
coefficients and a unique mode, for s > 1.

Equation (3) was estimated with and without the other ex-
ogenous variables, using a grid search over a considerable range
of starting values in an attempt to derive maximum likelihood
estimates. The lack of convergence of the estimation algorithms
was taken to indicate the inappropriateness of the gamma dis-
tribution. This suggests that the appropriate distribution has a
negative skew, rather than the positive skew of the gamma dis-
tribution and the trapezoid of Model 10. This complies with
previous results for both the UK and the USA. For the UK,
Khatri (1994) found that the best fit was the beta lag distribu-
tion (chosen according to Pearson’s method of moments) with
a pronounced negative skew and 18 years of lags. Chavas and
Cox (1992) found a considerably negatively skewed distribu-
tion (corresponding to a beta type distribution) for the U.S.
public sector (more basic) agricultural research whereas the lag
for private sector (applied/developmental) research was shorter
and positively skewed, similar to the gamma distribution. For
South Africa, which has an effective R&D system that concen-
trates on adaptive research, Khatri and Thirtle (2000) found a
short lag of up to nine years, with a strong positive skew, which
was best modeled with the gamma (or generalized exponential)
distribution.

The beta distribution lag coefficients are defined as

βi = α(i )p−1(1 − i )q−1, (4)

where βi is the ith lag coefficient and α, p, and q (together with
the coefficients of the other conditioning factors) are estimated
using maximum likelihood techniques. The beta distribution
again ensures positive coefficients with a unique mode and is
also a flexible structure that is suited to negatively skewed dis-
tributions. The nonlinear estimation algorithm converged reas-
suringly quickly to a solution for the beta distribution, with or
without the patent and farm size variables.

The diamonds in Fig. 3 depict the case where the other exoge-
nous variables are omitted and the results show the distinctive
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Fig. 3. Beta distributions and fourth-degree PDLs.

negative skew that typifies the beta distribution. This model
is not reported in the Table, as it is clearly misspecified, but
correcting the specification by including the omitted variables
changes the result entirely, as the second lag shape, depicted
by squares, shows. This lag is not negatively skewed and is
most like the PDL, but with positive and negative tails, rather
like the normal distribution. Thus, if up to three turning points
must be allowed for, the best choice of lag shape would be a
fourth-degree polynomial. This shows both the flexibility of the
beta distribution and the interdependence of the public and pri-
vate technology generating activities. The R&D lag cannot be
assumed to be independent of patents and farm size and should
not be estimated alone.

If the shorter-run patent variables are omitted, the expecta-
tion would be that the public R&D variable would pick up their
effects on TFP and would have higher coefficients for the early
years. Comparing the two beta lags in Fig. 3 shows that the
opposite is true here, with the elasticities for the early years of
the R&D lag increasing substantially when patents are included
and the later years diminishing. Perhaps this indicates that pub-
lic R&D and patents are complements, which was suggested by
Thirtle et al. (2004). Compared with the PDLs and the trape-
zoid of Table 5, Table 6 shows the flexibility of the beta lag
results (Model 12) and a total R&D elasticity of 0.32, which
is even higher than the unconstrained PDL. The impact of the
mechanical patent series is not much changed, but chemical
patents now have an elasticity of only 0.034. This may be due
to the better fit of the more flexible beta lag, which precluded
the use of PDLs for the patent variables. Instead, the chemical
patent’s stock was included as a four year moving average and

the mechanical patents as a moving average of the lags at six
and seven years.

The model selection criteria suggest that this is the best model
so far, as the test statistics improve and so does the adjusted
R2, although the Durbin Watson statistic suggests a possible
problem with serial correlation. The second column of Table 5
shows that only the lags from six to 19 years are significantly
different from zero. Perhaps more interesting is the fact that the
more flexible beta distribution is still unimodal. A final concern
is that Models 7 and 8 in Table 1 suggested the possibility of
a bimodal R&D lag by showing significant R&D lags of 10
and 24 years. Although the beta and gamma lags allow for
skewness, all the models tested thus far impose lag structures
that are unimodal and that may be finding maximum elasticities
in the midrange of the lag structure because they average the
impacts from a distribution that is actually bimodal.

Thus, the final models estimated here are the least restric-
tive. Model 13 in Table 6 is a fourth-degree polynomial, with
the starting value constrained, but not the end point. The im-
provement in the UK data is clear here, as models with this
many degrees of freedom never worked with old data prior
to DEFRA’s new TFP series. The triangles in Fig. 3 show a
very pronounced bimodal distribution with peaks at three and
20 years. This would indicate that it might be possible to sepa-
rate out the effects of short-run R&D activities from the impact
of projects with a long gestation period. Similar results have
been reported for the USA by Chavas and Cox (1992) using
a nonparametric model, and by Oehmke and Schimmelpfen-
nig (2004), who found impacts of public R&D at 2 years and
24 years using impulse response functions.
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Table 6
Beta and fourth-degree PDL distributions

Variable Beta (Model 12) PDL, Bimodal (Model 13) PDL, Unimodal (Model 14)

Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant 3.3491 7.77 3.29346 9.29738 2.72218 4.74069
LCHEMP 0.10676 2.95182 0.023252 2.71453
LCHEMP(−1) 0.038753 2.71453
LCHEMP(−2) 0.046503 2.71453
LCHEMP(−3) 0.046503 2.71453
LCHEMP(−4) 0.038753 2.71453
LCHEMP(−5) 0.023252 2.71453
CHEMP STOCK 0.0339 2.14 0.217016
LFARMSIZE2 −0.0601 −2.55 −0.097 −3.76247 −0.06376 −3.24003
LMACHP
LMACHP(−1)
LMACHP(−2) 0.010739 1.60419 0.016696 2.71414
LMACHP(−3) 0.018409 1.60419 0.027827 2.71414
LMACHP(−4) 0.023012 1.60419 0.033392 2.71414
LMACHP(−5) 0.024546 1.60419 0.033392 2.71414
LMACHP(−6) 0.0499 1.53 0.023012 1.60419 0.027827 2.71414
LMACHP(−7) 0.018409 1.60419 0.016696 2.71414
LMACHP(−8) 0.010739 1.60419
� MACHP LAGS 0.138 1.84 0.128866 0.15583
UKR&D(−1) 0.0005 0.16 −0.0004 −0.07186
UKR&D(−2) 0.0022 0.26 0.0000 3.35E − 04
UKR&D(−3) 0.0047 0.38 0.027119 2.52658 0.0011 0.104939
UKR&D(−4) 0.0079 0.56 0.0424 2.57698 0.0028 0.26427
UKR&D(−5) 0.0113 0.83 0.048488 2.64235 0.0048 0.521215
UKR&D(−6) 0.0147 1.29 0.047767 2.72642 0.0070 0.951827
UKR&D(−7) 0.0179 2.05 0.042359 2.82557 0.0093 1.59428
UKR&D(−8) 0.0206 2.83 0.034128 2.89248 0.0116 2.06268
UKR&D(−9) 0.0227 2.77 0.024673 2.70254 0.0137 2.00422
UKR&D(−10) 0.0242 2.34 0.015337 1.86347 0.0155 1.8087
UKR&D(−11) 0.0248 2.07 7.20E − 03 0.785427 0.0171 1.67328
UKR&D(−12) 0.0248 1.95 1.07E − 03 0.1009 0.0183 1.61067
UKR&D(−13) 0.024 1.97 −2.48E − 03 −0.21266 0.0190 1.61174
UKR&D(−14) 0.0225 2.14 −3.16E − 03 −0.26771 0.0194 1.67688
UKR&D(−15) 0.0205 2.57 −9.29E − 04 −0.08391 0.0193 1.82353
UKR&D(−16) 0.0181 3.55 3.98E − 03 0.402221 0.0187 2.10172
UKR&D(−17) 0.0153 5.06 0.011084 1.21404 0.0177 2.64854
UKR&D(−18) 0.0125 3.34 0.019638 1.99028 0.0163 3.90934
UKR&D(−19) 0.0096 1.75 0.028633 2.35193 0.0146 6.70904
UKR&D(−20) 0.007 1.05 0.036802 2.44715 0.0126 4.0698
UKR&D(−21) 0.0047 0.68 0.042616 2.45925 0.0104 1.93781
UKR&D(−22) 0.0027 0.47 0.044283 2.45505 0.0081 1.11433
UKR&D(−23) 0.0013 0.33 0.039753 2.4449 0.0057 0.704597
UKR&D(−24) 0.0005 0.27 0.026714 2.31249 0.0035 0.464274
UKR&D(−25) 0.0001 0.15 0.000259 0.29632 0.0016 0.308081
UKR&D(−26) −0.03544 −1.61889
UKR&D(−27) −0.09049 −1.96072
R&D stock 0.3153 0.52071 0.2334787
Durbin Watson 1.5386 1.71767 1.638
BSIC −79.999 −74.91 −85.244
ADJ R2 0.9327 0.9311 0.94799
Log likelihood 92.987 89.3548 98.3263

Table 6 shows that the elasticities are significantly different
from zero for the years from 1 to 10 and from 18 to 24, with
insignificant values in between. Thus, the seven years from
lags 11 to 17 are all insignificant, and these are the lags that
have the highest elasticities in all the previous models. The sum
of the elasticities increases to 0.52, while the impacts of the

patents series are maintained, despite the lack of lagged values
for chemical patents. This weakness, combined with model
selection criteria that show this model finishes (a close) second
to the beta lag, leads to further estimation. However, the most
telling result may be the Durbin Watson statistic, which is now in
the acceptable zone rather than being in the indeterminate area.
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This might be taken to indicate that the bimodal specification
is sufficiently correct to avoid serial correlation problems.

The final model, represented by the circles in Fig. 3, is re-
markably similar to the beta distribution and a normal curve.
This results from modeling both patent stocks as PDLs, which
seems to restore the parity between the two private R&D series’
that was emerging earlier. The bimodal form has now, however,
gone as the last column of Table 6 shows. The lags from 7 to 21
are significant and show a distinctly unimodal lag shape. This
model has model selection criteria that are clearly superior, ex-
plains 95% of the variance, and has all three technology series
properly modeled as stocks. The private sector elasticities sum
to 0.38 and the public R&D still has a substantial elasticity of
0.23. This overall “best” model is unimodal, but there remains
some possibility that if private sector impacts on productivity
could be measured more finely, that the bimodal distribution of
public R&D impacts might emerge again.

Throughout this discussion, the effect of omitting relevant
technology variables has been shown to be serious and there is
one omission in the UK case, which cannot be overcome as there
have been no data on extension expenditures since free public
extension was ended in 1988. It is not possible to determine the
effect this omission has on estimated elasticities for public and
private technology generation. In discussing attribution prob-
lems, Alston and Pardey (2001) suggest that private R&D and
extension may both be positively correlated with public R&D.
Nor will it ever be possible to collect data on the extension costs
of the hundreds of farm management consultancy companies
that have replaced the public system. So, one challenge is to
find another way of including extension in the model, perhaps
by modeling the gap between trial plot and farm yields, which
is usually taken to be a measure of the effectiveness of the
extension system.

Fitting any model over a period gives coefficients that are an
average for that period. If more detailed data can be discovered,
the assumption that the lag coefficients are constant should be
relaxed. First, the targeting of R&D tends to change over time
and in the UK there was some change toward targeting public
interest issues, such as environment, animal welfare, and food
safety, rather than productivity growth. The impacts of actual
TFP enhancing R&D would thus be larger, if some of the R&D
included here is being targeted elsewhere.

The other related implicit assumption is that the R&D lag
length stays the same over the period. The claims made for
biotechnology included the shortening of the research lag. One
trait from a plant can be incorporated without waiting for the
crop to grow and bringing in all manner of other unwanted traits
that then have to be bred out, if conventional methods were
used. Set against this the increasing length of the regulatory
lags, as checks have become more thorough and the lag length
could be longer or shorter over time. These types of issues
need to be attacked separately and the information imposed
in this type of lag modeling. Expecting to discover more by
fitting the lags in even more complex ways must hit diminishing
returns.

Table 7
ROR to public R&D expenditures

Lag structure � Significant ROR,%
R&D elasticities

UK R&Dt−12 0.1393 22
UK R&Dt−12, R&Dt−24 0.1264 23
PDL 2nd degree, 25 lags, start

and end constrained to zero
0.1951 27

Trapezoid with 35 lags 0.1717 21
PDL 2nd degree, 25 lags, no

constraints
0.2876 34

Beta distribution UK R&D with
25 lags only

0.1092 15

Beta, R&D with 25 lags +
mechanical & chemical patents
+ farm size

0.3153 34

PDL 4th degree, 25 lags, bimodal 0.5207 71
PDL 4th degree, 25 lags,

Unimodal
0.2335 26

5. Comparing ROR to R&D

One reason for modeling the shape of the lag is that it has
just as much impact on the rate of return as do lead time and
lag length. Higher returns will be shown by the more positively
skewed distributions since the bulk of the productivity effects
occur early on and thus their value is less eroded by discounting.
Table 7 reports the sum of the elasticities of TFP with respect to
R&D for all the models that fit the best and the marginal internal
rates of return. The way in which these are calculated can be
found in numerous publications, but these follow exactly the
methodology explained in Thirtle and Bottomley (1989). The
first two results are for single-year lags and it is clear that
if a single peak year is used it attracts a similar elasticity to
that of a complete lag structure, such as the third result, which
is the constrained PDL. That for the trapezoid is not strictly
comparable. It is slightly lower than the PDL because of the
longer lag period of 35 years. The range of the RORs across
these models is even smaller, being only from 22% to 27%,
which conforms well with expectations based on surveys of
past studies. For example, Alston and Pardey (2001) argue that
the very high ROR that were common in the early literature
were caused by short series truncating the lag structure.

The next step was to relax the priors, with the unconstrained
second-degree polynomial. The greater flexibility raises the
elasticity to 0.29 and the ROR to 34%. The beta distribution
without the other explanatory variables allowed the distinct
negative skew, which combined with the low elasticity of 0.11,
led to a ROR of only 15%. This result can probably be disre-
garded, since when the patent variables are added the elasticity
rises to 0.32 and the ROR to 34%. The highest elasticity and
ROR result from the bimodal model, which gives a ROR of
71%, but the distribution of funding between short- and long-
run projects would need to be known to make a more precise
ROR calculation in this case. The last result, for the unimodal
fourth-order PDL returns to the normal range, with a ROR of
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26%, which on the basis of the model selection criteria would
be the best choice with the improved but probably still faulty
data that we have.

6. Conclusions

This article outlines the demise of TFP growth in UK agri-
culture since the early 1980s and explains almost all of the
variance in TFP with public R&D expenditures, mechanical
and chemical patents, which represent the private sector and
farm size. Public R&D, private patents, and farm size were
shown to explain all but 2% of the variance in TFP, which is a
vast improvement on the past work on R&D and productivity
in the UK. However, better data and longer series make for
more stringent time series tests to ensure that the equations are
valid. The tests here establish the time series properties of the
variables, find cointegrating regressions and vectors and estab-
lish that Granger causality runs from the technology variables
to TFP and not the reverse.

Then, the R&D lag is modeled, with a view to imposing few
priors and allowing model specification and testing of the lead
time and the lag length and shape to be done together. The first
contribution of this article is to show that the most commonly
used lag structures, which are the second-degree PDL and the
trapezoid, even though yielding significant elasticities do not
fit the data very well. The PDL cannot represent the data if the
lag is skewed and the trapezoid being used appears to have the
wrong skew for the USA and the UK.

The beta distribution is preferable, but the article then shows
that the R&D lag cannot be fitted independently of the private
sector patent data. Since the private sector now spends more
than the public sector and the two efforts are interrelated this
is hardly surprising, but the direction of the effect is robust and
unexpected. Including the shorter-run patent variables could be
expected to reduce the impact of the public R&D lag in early
years. Instead, it very substantially increases it, raising issues
of the substitutability or complementarity of public and private
R&D.

The third contribution is equally hard to reconcile with the
commonly imposed lag structures, as the R&D lag tends toward
bimodality in some models. It is possible that the type of near
market R&D still done by DEFRA, which verges on exten-
sion, accounts for the first of the twin peaks, while the second,
with a gestation period of over 20 years, results from the quite
basic R&D undertaken by the Biotechnology and Biological
Science Research Council. Between the twin peaks, at the point
where second-degree polynomial and trapezoid lags estimate
the highest weights, there is no evidence of and impact of R&D
on productivity, in several of the models fitted.

The conventional models may be at odds with the data and
give poor estimates of the ROR to R&D, but definitive state-
ments are foolhardy. Griliches (1994) points out that the data
are the constraint is undoubtedly still valid, but more theory
as well as more data are required for better estimates. But the

theory should not lead to stronger priors being imposed on the
data. Instead, it should be an attempt to break up and separate
the many factors that spill into TFP change. It is a function
of basic and applied, public and private, domestic and foreign
R&D, extension, returns to scale, changes in crop and animal
mix, the weather, and no doubt many other influences like trade.
It is not surprising that reliable estimates are hard to obtain with
so much going on, especially when even central issues like the
interrelationships between public and private activity are so
poorly understood.

Acknowledgments

A special thanks goes to Bob Evenson, Wally Huffman, Jim
Oehmke, Krijn Poppe, Carlos San Juan, Robbin Shoemaker,
Kitty Smith, and other participants in the International Agri-
cultural Productivity Growth Workshop, particularly during the
sessions on developed country experiences. This paper was
presented at that workshop held at the Economic Research Ser-
vice, Washington, DC, on March 15, 2007, and was partially
supported by an ERS, U.S. Dept. of Agriculture, cooperative
agreement entitled “Institutional Reform and Induced Innova-
tion of R&D Systems in UK Agriculture, Lessons for the US
from the UK Privatization Programme.” However close the ties,
the views expressed are still those of the authors and not nec-
essarily the U.S. Dept. of Agriculture.

References

Alston, J. Pardey, P., 2001. Attribution and other problems in assessing the
returns to agricultural R&D. Agric. Econ. 25, 141–152.

Alston, J., Pardey, P., Smith, V., 1999. Paying for Agricultural Productivity.
Johns Hopkins Press, Baltimore, MD.

Alston, J., Chan-Kang, C., Marra, M., Pardey, P., Wyatt, T., 2000. Meta-analysis
of rates of return to agricultural R&D: ex pede herculem? Research Report
No. 113, Washington DC: IFPRI. June.

Chavas, J., Cox, T. L., 1992. A nonparametric analysis of the influence of
research on agricultural productivity. Am. J. Agric. Econ. 74, 583–591.

Engle, R. F., Granger, C. W. J., 1987. Cointegration and error correction:
representation, estimation and testing. Econometrica 55, 251–276.

Gilbert, C. L., 1990. Professor Hendry’s econometric methodology. Chapter
13. In: C. W. J. Granger (Ed.). Modeling Economic Time Series. Clarendon
Press, Oxford.

Griliches, Z., 1994. Productivity, R&D and the data constraint. Am. Econ. Rev.
84, 1–23. Reprinted in Economic Growth in the Long Run: A History of
Empirical Evidence, vol. III, Bart van Ark, ed., Elgar, 1997.

Huffman, W. E., Evenson, R. E., 1989. Supply and demand functions for
multiproduct U.S. cash−grain farms: biases caused by research and other
policies. Am. J. Agric. Econ. 71, 761–773.

Huffman, W. E., Evenson, R. E., 1992. Contribution of public and private
science and technology to US agricultural productivity. Am. J. Agric. Econ.
74, 751–756.

Huffman, W. E., Evenson, R. E., 2006. Science for Agriculture: A Long-Term
Perspective, Second edition. Blackwell Publishing, Ames, IA.

Johansen, S., 1988. Statistical analysis of cointegrating vectors. J. Econ. Dynam.
Contr. 12, 231–254.

Judge, G., Griffiths, W., Hill, R., Lutkepohl, H., Lee, T., 1985. The Theory and
Practice of Econometrics, Second edition, John Wiley & Sons, New York.



C. Thirtle et al. / Agricultural Economics 39 (2008) 73–85 85

Khatri, Y. J., 1994. Technical change and the returns to research in UK agri-
culture, 1953-1990. Unpublished PhD dissertation, University of Reading,
England.

Khatri, Y., Thirtle, C., 1996. Supply and demand functions for UK agriculture:
biases of technical change and the returns to public R&D. J. Agric. Econ.
47, 338–354.

Khatri, Y. J., Thirtle, C., 2000. Cointegration and modeling the length and
shape of the research lag. Chapter 10. In: C. Thirtle, J. van Zyl, N. Vink
(eds.), South African Agriculture at the Crossroads: An Empirical Analysis
of Efficiency, Technology and Productivity, Macmillan, Basingstoke.

Maddala, G. S., 1977. Econometrics. John Wiley, Chichester, UK.
Mullen, J., Cox, T., 1995. The returns from research in Australian broadacre

agriculture. Aus. J. Agric. Econ. 39, 105–128.
Oehmke, J. F., Schimmelpfennig, D. E., 2004. Structural change in the research-

productivity relationship. J. Prod. Anal. 21, 297–315.
Schimmelpfennig, D. E., Thirtle, C., 1994. Cointegration, and causality: explor-

ing the relationship between agricultural R&D and productivity. J. Agric.
Econ. 45, 220–231.

Schimmelpfennig, D. E., Thirtle, C., 1999. The internationalization of agricul-
tural technology: patents, R&D spillovers and their effects on productivity

in the European Union and United States. Contemporary Econ. Pol. 17,
457–468.

Schmidt, P., 1974. An argument for the usefulness of the gamma distributed lag
model. Int. Econ. Rev. 15, 246–250.

Thirtle, C., Bottomley, P., 1989. The rate of return to public sector agricultural
R&D in the UK, 1965-80. Appl. Econ. 21, 1063–1086.

Thirtle, C., Palladino, P., Piesse, J., 1997. On the organisation of agricultural
research in Great Britain, 1945–94: a quantitative description and appraisal
of recent reforms. Res. Pol. 26, 557–576.

Thirtle, C., Bottomley, P., Palladino, P., Schimmelpfennig, D. S., 1998. The
rise and fall of public sector plant breeding in the UK: a recursive model
of basic and applied research, and diffusion. Agric. Econ. 19(1–2), 127–
143.

Thirtle, C., Lin, L., Holding, J., Jenkins, L., Piesse, J., 2004. Explaining the
decline in UK agricultural productivity growth. J. Agric. Econ. 55, 343–
366.

Tsurumi, H., 1971. A note on gamma distributed lags. Int. Econ. Rev. 12,
317–323.

Vogelvang, B., 2005. Econometrics: Theory and Applications with Reviews.
Chapter 12. Pearson Education, Harlow, Essex.


